Pharmacology

Drugs that Affect the Cardiovascular System

Topics

- Electrophysiology
- Vaughn-Williams classification
- Antihypertensives
- Hemostatic agents

Cardiac Function

- Dependent upon
 - Adequate amounts of ATP
 - Adequate amounts of Ca⁺⁺
 - Coordinated electrical stimulus

Adequate Amounts of ATP

- Needed to:
 - Maintain electrochemical gradients
 - Propagate action potentials
 - Power muscle contraction

Adequate Amounts of Calcium

• Calcium is 'glue' that links electrical and mechanical events.

Coordinated Electrical Stimulation

- Heart capable of automaticity
- Two types of myocardial tissue
 - Contractile
 - Conductive
- Impulses travel through 'action potential superhighway'.

A.P. SuperHighway

- Sinoatrial node
- Atrioventricular node
- Bundle of His
- Bundle Branches
 - Fascicles
- Purkinje Network

Electrophysiology

- Two types of action potentials
 - Fast potentials
 - Found in contractile tissue
 - Slow potentials
 - Found in SA, AV node tissues

Fast Potential

Fast Potential

- Phase 0: Na⁺ influx "fast sodium channels"
- Phase 1: K + efflux
- Phase 2: (Plateau) K + efflux
 - AND Ca ++ influx
- Phase 3: K⁺ efflux
- Phase 4: Resting Membrane Potential

Cardiac Conduction Cycle

Slow Potential

dependent upon Ca++ channels = "slow channels"

Slow Potential

- Self-depolarizing
 - Responsible for automaticity
- Phase 4 depolarization
 - 'slow sodium-calcium channels'
 - 'leaky' to sodium
- Phase 3 repolarization
 - K⁺ efflux

Cardiac Pacemaker Dominance

• Intrinsic firing rates:

$$-SA = 60 - 100$$

$$-AV = 45 - 60$$

$$-$$
 Purkinje = 15 - 45

Cardiac Pacemakers

- SA is primary
 - Faster depolarization rate
 - Faster Ca++ 'leak'
- Others are 'backups'
 - Graduated depolarization rate
 - Graduated Ca⁺⁺ leak rate

Potential Terms

Dysrhythmia Generation

- Abnormal genesis
 - Imbalance of ANS stimuli
 - Pathologic phase 4 depolarization
 - Ectopic foci

Dysrhythmia Generation

- Abnormal conduction
- Analogies:
 - One way valve
 - Buggies stuck in muddy roads

Reentrant Circuits

Warning!

- All antidysrhythmics have arrythmogenic properties
- In other words, they all can CAUSE dysrhythmias too!

AHA Recommendation Classifications

- Describes weight of supporting evidence
 NOT mechanism
- Class I
- Class IIa
- Class IIb
- Indeterminant
- Class III

View AHA definitions

Vaughn-Williams Classification

- Class 1
 - Ia
 - Ib
 - Ic
- Class II
- Class III
- Class IV
- Misc

 Description of mechanism NOT evidence

Class I: Sodium Channel Blockers

- Decrease Na⁺ movement in phases 0 and 4
- Decreases rate of propagation (conduction) via tissue with fast potential (Purkinje)
 - Ignores those with slow potential (SA/AV)
- Indications: ventricular dysrhythmias

Class la Agents

- Slow conduction through ventricles
- Decrease repolarization rate
 - Widen QRS and QT intervals
 - May promote Torsades des Pointes!

• <u>PDQ</u>:

- procainamide(Pronestyl®)
- disopyramide(Norpace[®])
- qunidine
- (Quinidex®)

Class Ib Agents

- Slow conduction through ventricles
- Increase rate of repolarization
- Reduce automaticity
 - Effective for ectopic foci
- May have other uses

• <u>LTMD</u>:

- <u>l</u>idocaine (Xylocaine[®])
- tocainide (Tonocard[®])
- <u>m</u>exiletine (Mexitil[®])
- phenytoin (<u>D</u>ilantin[®])

Class Ic Agents

- Slow conduction through ventricles, atria & conduction system
- Decrease repolarization rate
- Decrease contractility
- Rare last chance drug

- flecainide
 (Tambocor[®])
- propafenone
 (Rythmol[®])

Class II: Beta Blockers

- Beta₁ receptors in heart attached to Ca⁺⁺ channels
 - Gradual Ca⁺⁺ influx responsible for automaticity
- Beta₁ blockade decreases Ca⁺⁺ influx
 - Effects similar to Class IV (Ca⁺⁺ channel blockers)
- Limited # approved for tachycardias

Class II: Beta Blockers

- propranolol (Inderal®)
- acebutolol (Sectral®)
- esmolol (Brevibloc®)

Class III: Potassium Channel Blockers

- Decreases K⁺ efflux during repolarization
- Prolongs repolarization
- Extends effective refractory period
- Prototype: bretyllium tosylate (Bretylol®)
 - Initial norepi discharge may cause temporary hypertension/tachycardia
 - Subsequent norepi depletion may cause hypotension

Class IV: Calcium Channel Blockers

- Similar effect as ß blockers
- Decrease SA/AV automaticity
- Decrease AV conductivity
- Useful in breaking reentrant circuit
- Prime side effect: hypotension & bradycardia

- verapamil (Calan®)
- diltiazem (Cardizem®)

 Note: nifedipine doesn't work on heart

Misc. Agents

- adenosine (Adenocard®)
 - Decreases Ca⁺⁺ influx & increases K⁺ efflux via
 2nd messenger pathway
 - Hyperpolarization of membrane
 - Decreased conduction velocity via slow potentials
 - No effect on fast potentials
- Profound side effects possible (but short-lived)

Misc. Agents

- Cardiac Glycocides
- digoxin (Lanoxin®)
 - Inhibits NaKATP pump
 - Increases intracellular Ca⁺⁺
 - via Na⁺-Ca⁺⁺ exchange pump
 - Increases contractility
 - Decreases AV conduction velocity

Pharmacology

Antihypertensives

Antihypertensive Classes

- diuretics
- beta blockers
- angiotensin-converting enzyme (ACE) inhibitors
- calcium channel blockers
- vasodilators

Blood Pressure = CO X PVR

- Cardiac Output = $SV \times HR$
- PVR = Afterload

Key:

CCB = calcium channel blockersCA Adrenergics = central-acting adrenergicsACEi's = angiotensin-converting enzyme inhibitors

Hormones

- 1. vasodilators
- 2. ACEI's
- 3. CCB's

Peripheral Sympathetic

Receptors

<u>alpha</u>

beta

- 1. alpha blockers 2. beta blockers

Central Nervous System

1. CA Adrenergics

Local Acting

1. Peripheral-Acting Adrenergics

Alpha₁ Blockers

Stimulate alpha₁ receptors -> hypertension Block alpha₁ receptors -> hypotension

- doxazosin (Cardura®)
- prazosin (Minipress®)
- terazosin (Hytrin®)

Central Acting Adrenergics

- Stimulate alpha₂ receptors
 - inhibit alpha₁ stimulation
 - hypotension

- clonidine (Catapress®)
- methyldopa (Aldomet®)

Peripheral Acting Adrenergics

- reserpine (Serpalan®)
- inhibits the release of NE
- diminishes NE stores
- leads to hypotension
- Prominent side effect of depression
 - also diminishes seratonin

Adrenergic Side Effects

Common

- dry mouth, drowsiness, sedation & constipation
- orthostatic hypotension
- Less common
 - headache, sleep disturbances, nausea, rash & palpitations

RAAS **ACE Inhibitors** Angiotensin I **Angiotensin II** 1. potent vasoconstrictor - increases BP 2. stimulates Aldosterone - Na⁺ & H₂O reabsorbtion

Renin-Angiotensin Aldosterone System

- Angiotensin II = vasoconstrictor
- Constricts blood vessels & increases BP
- Increases SVR or afterload
- ACE-I blocks these effects decreasing SVR & afterload

ACE Inhibitors

- Aldosterone secreted from adrenal glands cause sodium & water reabsorption
- Increase blood volume
- Increase preload
- ACE-I blocks this and decreases preload

Angiotensin Converting Enzyme Inhibitors

- captopril (Capoten®)
- enalapril (Vasotec®)
- lisinopril (Prinivil® & Zestril®)
- quinapril (Accupril®)
- ramipril (Altace®)
- benazepril (Lotensin®)
- fosinopril (Monopril®)

Calcium Channel Blockers

- Used for:
 - Angina
 - Tachycardias
 - Hypertension

CCB Site of Action

diltiazem & verapamil

nifedipine (and other *dihydropyridines*)

CCB Action

- diltiazem & verapamil
 - decrease automaticity & conduction in SA & AV nodes
 - decrease myocardial contractility
 - decreased smooth muscle tone
 - decreased PVR
- nifedipine
 - decreased smooth muscle tone
 - decreased PVR

Side Effects of CCBs

- Cardiovascular
 - hypotension, palpitations & tachycardia
- Gastrointestinal
 - constipation & nausea
- Other
 - rash, flushing & peripheral edema

Calcium Channel Blockers

- diltiazem (Cardizem®)
- verapamil (Calan[®], Isoptin[®])
- nifedipine (Procardia[®], Adalat[®])

Diuretic Site of Action

Mechanism

- Water follows Na⁺
- 20-25% of all Na⁺ is reabsorbed into the blood stream in the loop of Henle
- 5-10% in distal tubule & 3% in collecting ducts
- If it can not be absorbed it is excreted with the urine
- \bigvee Blood volume = \bigvee preload !

Side Effects of Diuretics

- electrolyte losses [Na⁺ & K⁺]
- fluid losses [dehydration]
- myalgia
- N/V/D
- dizziness
- hyperglycemia

Diuretics

- Thiazides:
 - chlorothiazide (Diuril®) & hydrochlorothiazide (HCTZ®, HydroDIURIL®)
- Loop Diuretics
 - furosemide (Lasix®), bumetanide (Bumex®)
- Potassium Sparing Diuretics
 - spironolactone (Aldactone®)

Mechanism of Vasodilators

- Directly relaxes arteriole smooth muscle
- Decrease SVR = decrease afterload

Side Effects of Vasodilators

- hydralazine (Apresoline®)
 - Reflex tachycardia
- sodium nitroprusside (Nipride®)
 - Cyanide toxicity in renal failure
 - CNS toxicity = agitation, hallucinations, etc.

Vasodilators

- diazoxide [Hyperstat®]
- hydralazine [Apresoline®]
- minoxidil [Loniten®]
- sodium Nitroprusside [Nipride®]

Pharmacology

Drugs Affecting Hemostasis

Hemostasis

• Reproduce figure 11-9, page 359 Sherwood

Platelet Adhesion

Coagulation Cascade

- Reproduce following components of cascade:
 - Prothrombin -> thrombin
 - Fibrinogen -> fibrin
 - Plasminogen -> plasmin

Platelet Inhibitors

- Inhibit the aggregation of platelets
- Indicated in progressing MI, TIA/CVA
- Side Effects: uncontrolled bleeding
- No effect on existing thrombi

Aspirin

- Inhibits COX
 - Arachidonic acid (COX) -> TXA2 (↓ aggregation)

GP IIB/IIIA Inhibitors

GP IIB/IIIA Inhibitors

- abciximab (ReoPro®)
- eptifibitide (Integrilin®)
- tirofiban (Aggrastat®)

Anticoagulants

- Interrupt clotting cascade at various points
 - No effect on platelets
- Heparin & LMW Heparin (Lovenox®)
- warfarin (Coumadin®)

Heparin

- Endogenous
 - Released from mast cells/basophils
- Binds with antithrombin III
- Antithrombin III binds with and inactivates excess thrombin to regionalize clotting activity.
 - Most thrombin (80-95%) captured in fibrin mesh.
- Antithrombin-heparin complex 1000X as effective as antithrombin III alone

Heparin

- Measured in Units, not milligrams
- Indications:
 - MI, PE, DVT, ischemic CVA
- Antidote for heparin OD: protamine.
 - MOA: heparin is strongly negatively charged.
 Protamine is strongly positively charged.

warfarin (Coumadin®)

- Factors II, VII, IX and X all vitamin K dependent enzymes
- Warfarin competes with vitamin K in the synthesis of these enzymes.
- Depletes the reserves of clotting factors.
- Delayed onset (~12 hours) due to existing factors

Thrombolytics

- Directly break up clots
 - Promote natural thrombolysis
- Enhance activation of plasminogen
- 'Time is Muscle'

- streptokinase (Streptase[®])
- alteplase (tPA®, Activase®)
- anistreplase (Eminase®)
- reteplase (Retevase®)
- tenecteplase (TNKase®)

Occlusion Mechanism

tPA Mechanism

Cholesterol Metabolism

- Cholesterol important component in membranes and as hormone precursor
- Synthesized in liver
 - Hydroxymethylglutaryl coenzyme A reductase
 - (HMG CoA reductase) dependant
- Stored in tissues for latter use
- Insoluble in plasma (a type of lipid)
 - Must have transport mechanism

Lipoproteins

- Lipids are surrounded by protein coat to 'hide' hydrophobic fatty core.
- Lipoproteins described by density
 - VLDL, LDL, IDL, HDL, VHDL
- LDL contain most cholesterol in body
 - Transport cholesterol from liver to tissues for use ("Bad")
- HDL move cholesterol back to liver
 - "Good" b/c remove cholesterol from circulation

Why We Fear Cholesterol

- Risk of CAD linked to LDL levels
- LDLs are deposited under endothelial surface and oxidized where they:
 - Attracts monocytes -> macrophages
 - Macrophages engulf oxidized LDL
 - Vacuolation into 'foam cells'
 - Foam cells protrude against intimal lining
 - Eventually a tough cap is formed
 - Vascular diameter & blood flow decreased

Why We Fear Cholesterol

- Plaque cap can rupture
- Collagen exposed
- Clotting cascade activated
- Platelet adhesion
- Thrombus formation
- Embolus formation possible
- Occlusion causes ischemia

Lipid Deposition

Thrombus Formation

Platelet Adhesion

Embolus Formation

Occlusion Causes Infarction

Antihyperlipidemic Agents

- Goal: Decrease LDL
 - Inhibition of LDL synthesis
 - Increase LDL receptors in liver
- Target: < 200 mg/dl
- Statins are HMG
 CoA reductase
 inhibitors

- lovastatin (Mevacor®)
- pravastatin (Pravachol®)
- simvastatin (Zocor®)
- atorvastatin (Lipitor®)

Thank You!

• To Temple College EMS Professions for permission to use their materials

