Visitor restrictions are in place due to COVID-19 (coronavirus). Review the latest information about the virus and how you can help by donating funds.

Science and Research

Taking the Lead in Cardiovascular Disease Research

Northwestern Medicine investigators are developing better treatments for the most prevalent diseases

This article was first published by Northwestern Medicine Magazine

In early 2018, the American Heart Association (AHA) released updated heart disease statistics. The report contained many all-too-familiar facts and figures: Cardiovascular diseases remain the No. 1 cause of death in the world and in the United States. But it also shared new findings: An estimated 103 million people — nearly half of all adults in the United States — have high blood pressure and are at risk for heart attacks and strokes, following AHA guidelines published last fall that redefine the metric.

The numbers highlight the critical importance of cardiovascular disease (CVD) research: basic science studies to understand its underpinnings; translational work to turn findings in the lab into viable treatments for patients; clinical trials to test new behavioral interventions, medications and care models; and population studies to understand how we can minimize risk factors so the disease doesn’t manifest in the first place.

Across Northwestern departments and within the Feinberg Cardiovascular and Renal Research Institute, an illustrious cohort of investigators is doing just that..

The fruit of the school’s growing cardiovascular research portfolio is evident in high-impact scientific publications, 50-plus ongoing clinical trials and patient care at Northwestern Memorial Hospital’s Bluhm Cardiovascular Institute ranked No. 7 for cardiology and heart surgery in the nation by U.S. News & World Report.

Northwestern’s leadership in this domain is apparent: The medical school is part of four AHA-funded research networks — more than any other institution in the country — one concentrating on vascular disease, a second on preventing risk factors for CVD, a third on disparities in CVD rates and a fourth on cardiovascular health in children.

“With our depth of research expertise in clinical, translational, basic and outcomes sciences, there is no area of contemporary cardiovascular medicine that we can’t explore,” says Clyde Yancy, MD, Msc, chief of Cardiology in the Department of Medicine, Magerstadt Professor and vice dean for Diversity and Inclusion. “A wealth of talent, determined vision and array of resources allow us to build unparalleled research networks and proceed with pivotal research capable of changing life and living for those with known, or for those at risk for, cardiovascular disease.”

The medical school’s faculty are many of the leaders behind the clinical practice guidelines and performance measures that inform clinicians nationwide. Yancy, for example, chairs the AHA’s Get With The Guidelines heart failure registry, a quality improvement initiative that holds more than 1 million patient records and captures data from over 35 percent of all hospitals in the United States.

“Part of our growth and success reflects the momentum generated by recruitment of world-class senior faculty in an environment that already housed world-class population scientists and stellar clinical investigators,” says Douglas Vaughan, MD, chair and the Irving S. Cutter Professor of Medicine. In his own research, Vaughan studies a protein over-expressed in CVD called plasminogen activator inhibitor-1 and has developed a new drug to inhibit its action.

Mobilizing Patients With Peripheral Artery Disease

Many patients with peripheral artery disease (PAD) are sidelined from activities they love because of difficulty walking. They can’t travel, go out with friends, keep up with grandkids or walk to the store, explains Mary McDermott, MD, ’92 GME, the Jeremiah Stamler Professor of Medicine in the Division of General Internal Medicine and Geriatrics.

One in five people age 75 and older develop PAD, which occurs when the arteries that supply the legs narrow or are blocked by a buildup of cholesterol and other substances. Despite how life-altering and common PAD is, many physicians incorrectly attribute their patients’ mobility problems to old age or arthritis, and miss opportunities to minimize patients’ risk of heart attack or stroke and to improve their mobility, McDermott says.

While tried-and-true medications like statins and anti-platelet therapies can help reduce cardiovascular events in patients with PAD, options to improve mobility are limited. Physicians may use a stent to improve blood flow, but the benefit typically only lasts a few years and not all patients with PAD are good candidates for these procedures. Supervised exercise three times a week at a medical center can help, but that intervention is not always feasible.

McDermott’s team has been testing home-based exercise strategies. In one trial, published in JAMA, patients who came in to a medical center just once per week and completed the rest of their exercise at home improved their six-minute walk by more than 50 meters, compared to a 30-meter improvement for patients doing supervised exercise. During their weekly visits, they met with other patients and a coach who helped them set walking exercise goals and monitor progress.

“Based on what we know in 2018, patients need to come in to the medical center occasionally and meet with a coach and really feel accountable to that coach,” says McDermott, also a professor of Preventive Medicine and director of Northwestern’s AHA center focused on calf muscle pathology and disability in PAD.

McDermott’s group is also testing experimental medications. Currently, there are only two drugs for PAD approved by the Food and Drug Administration. One offers only a modest benefit and recent trials suggest the other doesn’t work at all, she says.

“We need new drugs that can be combined with exercise or help get patients to the point where they’re able to exercise,” McDermott says. She has a clinical trial underway testing whether the diabetes drug metformin may benefit patients with PAD who don’t have diabetes.

“Scientists have successfully reduced rates of heart attack in older people, so people are living longer,” McDermott explains. “Now we’re really trying to focus on the ability of patients with PAD to engage in life fully and have a better quality of life.”